位置:成果数据库 > 期刊 > 期刊详情页
基于模糊模式与决策树融合的脚本病毒检测算法
  • 期刊名称:电子与信息学报
  • 时间:2014.1.1
  • 页码:108-113
  • 分类:TP389.1[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南开大学计算机与控制工程学院,天津300071, [2]南开大学天津市智能机器人技术重点实验室,天津300071
  • 相关基金:国家自然科学基金项目(No.61004086)、天津市自然科学基金项目(No.15JcYBJC18900)资助
  • 相关项目:基于本体的计算机病毒自适应建模方法研究
中文摘要:

针对脚本样本集具有混淆、统计、语义等不同层面上的特征,设计基于多类特征的JavaScript恶意脚本检测算法,实现针对恶意JavaScript脚本的离线分析系统JCAD.首先提取脚本的混淆特征,使用C4.5决策树分析被混淆的脚本并解除混淆.然后提取脚本的静态统计特征,根据语义进行脚本序列化,构造危险序列树,提取脚本的危险序列特征.最后以三类特征作为输入,采用对脚本样本集的非均匀性与不断增加的特点具有较强适应能力的概率神经网络构造分类器,判断恶意脚本.实验表明,该算法具有较好的检测准确率与稳定性.

英文摘要:

Aiming at features of different levels in the script sample set, such as obfuscation, statistics and semantics, a malicious JavaScript script detection algorithm based on multi-class feature is proposed. The JavaScript analysis system, JavaScript codes analysis and detection, is implemented. The obfuscation features of the JavaScript are extracted and the obfuscated scripts are analyzed and deobfuscated by C4.5 algorithm. The static statistical features of the JavaScript are extracted, and according to the semantics, the JavaScript is serialized. Dangerous sequence tree is generated by the proposed algorithm to extract the dangerous sequence features of the malicious JavaScript. Three types of features are used as the input. The probabilistic neural network with strong ability to adapt to non-uniformity and the increasing quantity of the input samples is applied to construct the classifier for the detection of malicious JavaScript. The experimental results show that the proposed algorithm has better detection accuracy and stability.

同期刊论文项目
期刊论文 5 会议论文 4 专利 1
同项目期刊论文