In order to improve the acquisition probability of satellite navigation signals, this paper proposes a novel code acquisition method based on wavelet transform filtering. Firstly, the signal vector based on the signal passing through a set of partial matched filters(PMFs) is built. Then, wavelet domain filtering is performed on the signal vector value. Since the correlation signal is low in frequency and narrow in bandwidth, the noise out-of-band can be filtered out and the most of the useful signal energy is retained.Thus this process greatly improves the signal to noise ratio(SNR).Finally, the detection variable when the filtered signal goes through the combination process is constructed and the detection based on signal energy is made. Moreover, for the better retaining useful signal energy, the rule of selection of wavelet function has been made. Simulation results show the proposed method has a better detection performance than the normal code acquisition methods under the same false alarm probability.
In order to improve the acquisition probability of satellite navigation signals, this paper proposes a novel code acquisition method based on wavelet transform filtering. Firstly, the signal vector based on the signal passing through a set of partial matched filters (PMFs) is built. Then, wavelet domain filtering is performed on the signal vector value. Since the correlation signal is low in frequency and narrow in bandwidth, the noise out-of-band can be filtered out and the most of the useful signal energy is retained. Thus this process greatly improves the signal to noise ratio (SNR). Finally, the detection variable when the filtered signal goes through the combination process is constructed and the detection based on signal energy is made. Moreover, for the better retaining useful signal energy, the rule of selection of wavelet function has been made. Simulation results show the proposed method has a better detection performance than the normal code acquisition methods under the same false alarm probability.