位置:成果数据库 > 期刊 > 期刊详情页
基于高斯金字塔的运动目标检测
  • ISSN号:1672-7207
  • 期刊名称:《中南大学学报:自然科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]武汉大学电子信息学院,湖北武汉430072
  • 相关基金:国家自然科学基金资助项目(40971219); 中央高校基本科研业务费专项资金资助项目(201121202020005)
中文摘要:

针对自然环境下运动目标检测背景动态变化问题,提出一种新的基于高斯金字塔模型的背景差分算法。首先将图像序列进行多尺度分解,得到不同分辨率下的当前帧和背景帧;然后,在不同分辨率下采用高低双阈值进行背景差分运算,得到双阈值产生的2帧前景图像,阈值根据环境自动获取;最后,将各层差分图像自顶向下融合检测感兴趣的运动目标,并在HSV空间中去除阴影。背景模型的初始化和更新方法基于2种假设:一是背景点出现的概率较大;二是距离当前帧越近的点越能真实地描述背景。研究结果表明:该算法能有效地应用于动态背景环境下,可以克服光照变化及阴影的影响。多个标准图像序列的测试证明了该算法具有较高的准确性、鲁棒性和自适应性,时间复杂度低,可以运用于实时检测系统中。

英文摘要:

To solve the problem of dynamic background under natural environment when detecting moving objects,a new background difference method based on Gaussian pyramid model was proposed.Firstly,multi-scale decomposition was carried out for image sequence to get multi-resolution images.Then a high and low double thresholds background difference operation was used under different resolutions to get two foreground images by dual-threshold.All the thresholds were obtained automatically according to the environment.At last,difference images in each layer were fused top-down to detect the interested moving objects,and shadows were removed in HSV space.Background model initialization and update method were based on two assumptions,the first one of which is that background points appear with a larger frequency and the second is that the closer to the current frame,the more likely to represent the real background.The results show that the proposed algorithm can be effectively applied to dynamic background environments and can overcome the effect of illumination changes and shadows.Experiments on several standard image sequences demonstrate that the proposed method has high accuracy,robustness and adaptability.It has lower time complexity and can be applied in real-time detection systems.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中南大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:中南大学
  • 主编:黄伯云
  • 地址:湖南长沙中南大学校本部
  • 邮编:410083
  • 邮箱:zngdxb@csu.edu.cn
  • 电话:0731-88879765
  • 国际标准刊号:ISSN:1672-7207
  • 国内统一刊号:ISSN:43-1426/N
  • 邮发代号:42-19
  • 获奖情况:
  • 首届全国优秀科技期刊评比一等奖,第二届全国优秀科技期刊评比一等奖,首届中国有色金属工业优秀科技期刊评比一等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:20874