位置:成果数据库 > 期刊 > 期刊详情页
基于动态贝叶斯网络的可分解信念状态空间压缩算法
  • ISSN号:1002-0411
  • 期刊名称:《信息与控制》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中南大学信息科学与工程学院,湖南长沙410083, [2]先进控制与智能自动化湖南省工程实验室,湖南长沙410083, [3]深圳职业技术学院教育技术与信息中心,广东深圳518055
  • 相关基金:国家自然科学基金资助项目(61074058,60874042);广东省自然科学基金资助项目(S2011040004769).
中文摘要:

针对部分可观察马尔可夫决策过程(POMDP)的信念状态空间规模“维数灾”问题,根据信念状态变量存在可分解和独立关系的特性,提出一种基于动态贝叶斯网络(DBN)的可分解信念状态空间压缩算法(factored belief states space compression, FBSSC).该算法通过构建变量间依赖关系图,根据独立关系检验去除多余边,将转移函数联合概率分解成若干个条件概率的乘积,实现信念状态空间的无损压缩.对比实验和RoboCupRescue仿真结果表明,本文算法具有较低误差率、较高收敛性和普遍适用性等特性.

英文摘要:

For the dimensionality curse problem of belief state space scale of partially observable Markov decision pro- cess (POMDP), a factored belief states space compression (FBSSC) algorithm based on dynamic Bayesian network (DBN) is proposed according to the decomposable features and dependent relationship of the belief state variables. Based on the building of the graph of dependent relationship among variables, the algorithm removes the redundant edges by detecting the dependent relationships, and decomposes the joint probability of transition function into the product of several conditional probabilities, which realizes the lossless compression of belief states space. Comparison experiments and RoboCupRes. cue simulation results show that the algorithm has the characteristics of lower error rate, higher convergence, and general applicability.

同期刊论文项目
期刊论文 16 会议论文 6 获奖 4 专利 3
同项目期刊论文
期刊信息
  • 《信息与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王天然
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:xk@sia.cn
  • 电话:024-23970049
  • 国际标准刊号:ISSN:1002-0411
  • 国内统一刊号:ISSN:21-1138/TP
  • 邮发代号:
  • 获奖情况:
  • 全国优秀期刊三等奖,中科院优秀期刊三等奖,辽宁省优秀期刊一等奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12960