深入分析了RSA模数N的强素数因子的特殊结构,进一步确定了2对N的阶δN(2)与Euler函数φ(N)之间的关系,提出了新的分解由强素数因子乘积构成的RSA模N的量子算法,简化了因子分解的过程,提高了运算效率。
This paper deeply analyses the special structure of strong primes of the RSA modulus N,and further identifies the relationship between the Euler function φ(N) and the order δN(2),and proposes a new quantum algorithm for the factorization of the RSA modulus N,a product of two strong primes.This algorithm simplifies the process of factorization and improves its efficiency.