位置:成果数据库 > 期刊 > 期刊详情页
基于构图规则的图像美学优化
  • ISSN号:1000-565X
  • 期刊名称:《华南理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华南理工大学电子与信息学院,广州510640
  • 相关基金:国家自然科学基金项目(No.60972136,61171142)、广东省科技计划项目(No.20108010600014,2011A010801005)资助
中文摘要:

针对时空特征点检测算法计算效率较低和特征点冗余度较大的问题,提出一种基于邻域像素的快速时空特征点检测方法.通过寻找三维时空中局部邻域内像素值差异较大的点以快速定位时空特征点,然后采用非极大值抑制的方法剔除其中的冗余点,将筛选后的时空特征点用于人体行为识别.此外,还根据二项分布原理研究特征点检测中邻域像素分割阈值的取值范围及其它检测参数优化问题.实验结果表明该算法具有较高的检测速度,既能稳定提取足够数量的特征点又能降低其冗余度,在行为识别中也保持较高的准确率.

英文摘要:

To solve the problem of low computational efficiency and many redundant feature points in feature point detection algorithm, a fast spatial-temporal feature point detection algorithm based on local neighbor pixels is proposed. The spatial-temporal feature points are located quickly by finding the points with great difference in pixel value in 3D spatial-temporal local neighborhood. Then the redundant feature points are removed with the 3D non-maxima suppression method, and the screened feature points are applied to human action recognition. In addition, the range of pixel segmentation threshold in local area and other detection problems of parameter optimization are analyzed according to binomial probability distribution principle. The experimental results show that the proposed algorithm not only improves the speed of feature point detection but also reliably detects enough amounts of feature points with the least redundancy, which leads to the high accuracy in human action recognition.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华南理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部科技司
  • 主办单位:华南理工大学
  • 主编:李元元
  • 地址:广州市天河区五山路华南理工大学17号楼
  • 邮编:510640
  • 邮箱:journal@scut.edu.cn
  • 电话:
  • 国际标准刊号:ISSN:1000-565X
  • 国内统一刊号:ISSN:44-1251/T
  • 邮发代号:46-174
  • 获奖情况:
  • 本学报荣获1996年国家教委系统优秀科技期刊二等奖...,1999年荣获全国优秀高校自然科学学报及教育部优秀...,2001年荣获广东省优秀期刊奖和广东省优秀科技期刊...,2004年获全国高校优秀科技期刊二等奖,2006年获首届教育部优秀科技期刊奖,2008年荣获第二届教育部优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22954