利用直流电电化学沉积法将生长碳纳米管(CNT)的催化剂镍均匀地附着在石墨电极(GE)表面,再通过化学气相沉积法制备得到原位生长碳纳米管化学修饰电极(GSCNT-CME).电化学沉积的金属镍和所制备的修饰电极分别用光学显微镜、扫描电子显微镜(SEM)和电子能谱(EDX)进行表征,所得修饰电极的电化学性能用[Fe(CN)6]3-/[Fe(CN)6]4-溶液进行表征.结果表明:经直流电电化学沉积,可以在石墨电极表面沉积一层致密的金属镍,能生长出管径均匀的碳纳米管,所制得的修饰电极具有良好的电化学响应灵敏性和准确性,可在电化学检测领域发挥重要的应用.
Grown in situ carbon nanotube chemically modified electrode(GSCNT-CME) was prepared by the in situ growth of carbon nanotube(CNT) onto a pretreated graphite electrode(GE) via catalytic chemical vapor deposition.The pretreated GE was prepared by direct current electrochemical deposition using a nickel catalyst.The deposited nickel and the obtained GSCNT-CME were characterized by optical microscopy,scanning electron microscopy(SEM),and energy dispersive X-ray diffraction(EDX).The electrochemical performance of the obtained GSCNTCMEs were characterized by cyclic voltammetry using a [Fe(CN)6]3-/[Fe(CN)6]4-solution.Results showed that there was a layer of nickel on the pretreated GE surface after direct current electrochemical deposition and CNT with uniform tube diameters were present on the surface of the GE.The prepared GSCNT-CME has good current response sensitivity and good accuracy.It may be applied in electrochemical testing field.