本文研究求解R(α,β1,β2,γ)类非线性中立型延迟积分微分方程单支方法的数值稳定性,结果表明:在一定条件下,A-稳定的单支方法是数值稳定的,强A-稳定的单支方法是渐近稳定的,最后的数值试验验证了所获理论的正确性.
This paper is devoted to the numerical stability of one-leg methods for a classR(α,β1,β2,γ) of nonlinear neutral delay integro-differential equations(NDIDEs). Under suitable conditions, it is proved that an A-stable one-leg method is numerically stable and a strongly A-stable one-leg method is asymptotically stable. One numerical experiment is conducted to testify our numerical analysis.