利用初等方法给出了丢番图方程2^x-2^y·3^z-2·3^u=9^k+1 ,x,y,k〉0,z,u≥0的全部整数解:(x,y,z,u,k)=(4,2,0,0,1),(5,2,0,2,1),(6,2,2,2,1),(8,2,1,4,2),(5,4,0,1,1)(6,4,1,1,1),(9,4,0,5,1),(10,5,2,1,3),(7,6,0,3,1),(8,6,1,3,1)。利用此结果给出了与和完全数相关的丢番图方程2^a+c+1-2^c+1,3^d+f+k-2-2·3^f+k-1=3^k+1,a〈0,c〈0,d≥0,f≥0,k≡0(mod2)的全部整数解:(a,c,d,f,k)=(4,1,1,1,2),(1,3,0,0,2),(2,3,1,0,2).
By elementary method, all solutions (x,y,z, u, k) in integer of the Diophantine equation 2^x-2^y·3^z-2·3^u=9^k+1 ,x,y,k〉0,z,u≥0 are given by:(x,y,z,u,k)=(4,2,0,0,1),(5,2,0,2,1),(6,2,2,2,1),(8,2,1,4,2),(5,4,0,1,1)(6,4,1,1,1),(9,4,0,5,1),(10,5,2,1,3),(7,6,0,3,1),(8,6,1,3,1).With this, all solutions in integer of the Diophantine equation 2^a+c+1-2^c+1,3^d+f+k-2-2·3^f+k-1=3^k+1,a〈0,c〈0,d≥0,f≥0,k≡0(mod2),which is related to Perfect totient numbers ,are given by : ( a ,c,d,f,k) = (4,1,1,1,2), ( 1,3,0,0,2 ), (2,3,1,0,2).