位置:成果数据库 > 期刊 > 期刊详情页
一种输入数据为模糊数的模糊支持向量机
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北方民族大学数学与信息科学学院,银川750021
  • 相关基金:基金项目:国家自然科学基金(No.61261043);北方民族大学研究生创新项目(校研究生发[2014]6号).
中文摘要:

支持向量机所处理的数据绝大多数是精确值,但当训练样本中含有模糊信息时,支持向量机将无能为力。基于此,针对输入数据是模糊数的分类问题,提出一种带有去模糊函数的模糊支持向量机(FSVM*)。该算法采用模糊数间的距离作为模糊数去模糊的度量,从而构造去模糊函数将模糊值转化为精确值,同时将去模糊函数与模糊支持向量机相结合完成模糊数据的分类。数值结果表明:相比Forghani提出的FSVDD*算法,该算法更有效。

英文摘要:

The data that Support Vector Machine(SVM)deals with are mostly precise values,but the SVM cannot be utilizedwhen training samples involving in fuzzy information.Based on this,in response to the classification problem thatinput data are fuzzy numbers,a novel Fuzzy SVM(FSVM*)with defuzzification function is proposed.This algorithmconstructs defuzzification function by taking the distance between fuzzy numbers as the metric for defuzzification offuzzy numbers to convert fuzzy numbers into precise values,and classifies the fuzzy data by using defuzzification functionand fuzzy SVM in combination at the same time.The experimental results show that the model in this paper is moreeffective compared to the FSVDD*proposed by Forghani.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887