位置:成果数据库 > 期刊 > 期刊详情页
基于合一句法和实体语义树的中文语义关系抽取
  • 期刊名称:中文信息学报
  • 时间:0
  • 页码:17-23
  • 语言:中文
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]苏州大学计算机科学与技术学院,江苏苏州215006, [2]江苏省计算机信息处理技术重点实验室,江苏苏州215006
  • 相关基金:基金项目:国家863计划资助项目(2006AA012147);国家自然科学基金资助项目(60673041,60873150);国家教育部博士点基金资助项目(200802850006);江苏省自然科学基金资助项目(BK2008160);江苏省高校自然科学重大基础研究项目(08KJA520002)
  • 相关项目:基于树核函数的弱指导实体间语义关系抽取研究
中文摘要:

该文提出了一种基于卷积树核函数的中文实体语义关系抽取方法,该方法通过在关系实例的结构化信息中加入实体语义信息,如实体类型、引用类型和GPE角色等,从而构造能有效捕获结构化信息和实体语义信息的合一句法和实体语义关系树,以提高中文语义关系抽取的性能。在ACE RDC 2005中文基准语料上进行的关系探测和关系抽取的实验表明,该方法能显著提高中文语义关系抽取性能,大类抽取的最佳F值达到67.0,这说明结构化句法信息和实体语义信息在中文语义关系抽取中具有互补性。

英文摘要:

This paper proposes a convolution tree kernel-based approach to Chinese semantic relation extraction. It constructs a unified syntactic and entity semantic tree by incorporating entity semantic information, such as entity type, entity subtype and mention type etc. , into the structural information of a relation instance. The motivation behind this approach is to effectively capture both the structural and entity semantic information in a unified way in order to boost the predictive performance of relation extraction. Evaluation on the ACE RDC 2005 Chinese benchmark corpus shows that our method significantly improves the performance of Chinese semantic relation extraction, specifically achieving the highest F-measure of 67.0 on the top-level relation extraction, and exhibits the complementation of the structure of syntactic information and semantic information in Chinese Semantic Relation Extraction.

同期刊论文项目
同项目期刊论文