本文讨论具有任意亏指数d的自伴线性哈密顿算子点谱与对应的线性哈密顿系统的平方可积解之间的关系.若对于某个实开区间中的任意点λ,系统总有d个线性无关解,则它的任何自伴算子的点谱在这个开区间上是不稠密的.
In this paper,the relationship between the number of square-integrable solutions of the linear Hamiltonian systems with real-values spectral parameterλand point spectrum of linear Hamiltonian operators with arbitrary deficiency index d is discussed.If for allλin an open interval I,there always exist d linearly independent square-integrable solutions, then the point spectrum of each self-adjoint extension of the minimal operator is nowhere dense in I.