应用量子主方程理论研究量子点-微腔耦合系统的激射性质.分别探索了不同类型的微腔耦合系统("好的系统"、"中等系统")在外加泵浦场的作用下表现出的激射现象.分析比较了失谐大小及环境纯消相干对这两种微腔耦合系统的内部特性(光场分布、腔内光子数等)产生的影响.数值仿真表明:对于"好的系统",在失谐量不大的情况下,引入适当的纯消相干有利于提高耦合系统的激射性能;对于"中等系统",由于失谐条件下光子在腔内集聚困难,因而很难达到激射,但是通过引入适量的纯消相干可以对腔内光场分布和光子数产生剧烈调制作用.该结果对于研究单量子点激光器,以及探索光与物质相互作用等方面具有指导作用.
By employing the Master Equation theory,the lasing properties of the quantum dot-microcavity coupling system were studied.For different types of coupling systems,i.e.,"good system"and"more realistic system",their lasing phenomenon under external pump field were investigated individually.Moreover,the influence of the detuning and the pure dephasing on internal characteristics of the coupling system,such as its second-order correlation function at zero time delay or the number of photons in cavities was analyzed.The numerical simulations show that,for a "good system",when the detuning between a quantum dot and a cavity is not very large,the certain pure dephasing can improve the lasing properties of the coupled system;for a"more realistic system",due to the difficulty of photon gathering in a cavity under off-resonant conditions,it is very hard to observe the lasing phenomenon.However,the pure dephasing will still play an important role on modulating the light field and the photon numbers in the cavity.These results may play positive effects on some research either on lasing with the single quantum dot,or modulating the interaction between light and matter etc.