位置:成果数据库 > 期刊 > 期刊详情页
基于神经网络曲线拟合的电晕电流数学模型研究
  • ISSN号:1003-6520
  • 期刊名称:高电压技术
  • 时间:2015.3.31
  • 页码:1034-1041
  • 分类:TM[电气工程]
  • 作者机构:[1]军械工程学院静电与电磁防护研究所,石家庄050003
  • 相关基金:国家自然科学基金(61172035;51277181)
  • 相关项目:电晕放电电磁辐射场远距离探测方法与关键技术
中文摘要:

为求解电晕电流的通用数学模型,利用人工神经网络能以任意精度逼近任意函数的能力,设计了2层BP神经网络,分别对实测的具有双指数函数、Gaussian函数及不规则脉冲形式的电晕电流进行拟合。结果表明,当神经元数目取5-10时,便能对不同类型的电晕电流波形进行高精度拟合,拟合误差量级可达10-4,拟合时间约为2-10 s,通过提取网络的权值、阈值参数可得到电流的解析表达式。该方法得到的电流表达式具有统一的结构,不依赖于电流波形,可作为电晕电流的通用数学模型。

英文摘要:

In order to study the general mathematic model for corona currents, we designed a back propagation artificial neural network(BPNN) consisting of two layers which can approximates to an arbitrary function with an arbitrary accuracy to fit the measured corona currents. Theses current waveforms are represented by double exponential function, Gaussian function, and random irregular pulses. The results indicate that the BPNN can fit the experiment corona current waveforms with a high accuracy when the neuron number is selected from 5 to 10. Compared with the measured current waveforms, the error of mean square(MSE) of the fitting current waveforms can arrive 10-4 and the calculation time is about 2 to 10 seconds by the BPNN method. The analytical expressions for the corona currents can be achieved via extracting the weights and thresholds parameters of the BPNN. The expressions can be used as the general mathematic model for corona currents because the expressions have the same structure and the structure is independent of the waveform.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《高电压技术》
  • 中国科技核心期刊
  • 主管单位:国家电力公司
  • 主办单位:国网武汉高压研究院 中国电机工程学会
  • 主编:郭剑波
  • 地址:湖北省武汉市珞瑜路143号
  • 邮编:430074
  • 邮箱:hve@whvri.com
  • 电话:027-59835528
  • 国际标准刊号:ISSN:1003-6520
  • 国内统一刊号:ISSN:42-1239/TM
  • 邮发代号:38-24
  • 获奖情况:
  • 历届电力部优秀期刊,历届湖北省优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:35984