位置:成果数据库 > 期刊 > 期刊详情页
基于遗传算法和模糊聚类的文本分类研究
  • ISSN号:1673-629X
  • 期刊名称:《计算机技术与发展》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨150080
  • 相关基金:国家自然科学基金(60736014); 黑龙江省教育科学技术研究项目(11531049)
中文摘要:

混沌神经网络已被证明是解决组合优化问题的有效工具,但单一化的退火因子无法同时满足准确性和速度性两方面要求,因此改变传统的混沌方式以提高搜索速度和精度就变得尤为重要。文中将Sigmoid函数转化为小波函数可以有效地解决该问题,通过将Sigmoid函数转化为Mexican hat小波函数,以及引入Shannon小波和Sigmoid函数加和组成的非单调激励函数这两种方式,提高了搜索效率和准确度,并用这两种新的模型对两种优化问题进行仿真。仿真结果表明小波混沌神经网络无论在全局最优解的搜索效率还是精确度上都明显优于传统的混沌神经网络。可知将小波函数引入混沌神经网络是极具研究潜力的。

英文摘要:

Chaotic neural network has been proved to be a valid tool for solving combinational optimization problems.But the single factor of the annealing cannot meet in the terms of both accuracy and speed requirements.So to change the traditional way to improve the search of chaotic speed and accuracy becomes more important.This Sigmoid function into the wavelet function can solve the problem,through the Sigmoid function into a Mexican hat wavelet function,and the introduction of Shannon wavelet and Sigmoid function and composition of additional non-monotonic activation function of these two methods to improve the efficiency of search and accuracy.And use these two new models to simulate two kinds of optimization problems.Simulation results show that the wavelet chaotic neural network optimal solution in the search speed and accuracy are much better than the conventional chaotic neural network.Show that the introduction of the wavelet function to chaotic neural network is a great potential.

同期刊论文项目
期刊论文 77 会议论文 94 专利 4 著作 2
同项目期刊论文
期刊信息
  • 《计算机技术与发展》
  • 中国科技核心期刊
  • 主管单位:陕西省工业和信息化厅
  • 主办单位:陕西省计算机学会
  • 主编:王守智
  • 地址:西安市雁塔路南段99号
  • 邮编:710054
  • 邮箱:ctad@vip.163.com
  • 电话:029-85522163
  • 国际标准刊号:ISSN:1673-629X
  • 国内统一刊号:ISSN:61-1450/TP
  • 邮发代号:52-127
  • 获奖情况:
  • 《CAJ-CD规范》执行优秀期刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊
  • 被引量:21263