位置:成果数据库 > 期刊 > 期刊详情页
生物医学文本挖掘技术的研究与进展
  • ISSN号:1003-0077
  • 期刊名称:《中文信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学教育部-微软语言语音重点实验室,黑龙江哈尔滨150001
  • 相关基金:国家863计划项目(2006AA010108,2006AA01Z150)
中文摘要:

生物医学研究是二十一世纪最受关注的研究领域之一,该领域发表了巨量的研究论文,已经达到年平均60万篇以上。如何在规模巨大的研究文献中有效地获取相关知识,是该领域研究者所面临的挑战。作为生物信息学分支之一的生物医学文本挖掘技术就是一项高效自动地获取相关知识的新探索,近年来取得了较大进展。这篇综述介绍了生物医学文本挖掘的主要研究方法和成果,即基于机器学习方法的生物医学命名实体识别、缩写词和同义词的识别、命名实体关系抽取,以及相关资源建设、相关评测会议和学术会议等。此外还简要介绍了国内研究现状,最后对该领域近期发展作了展望。

英文摘要:

21^st century is the era of biology and there are more than 6 hundred thousand academic papers published annually in this field. The challenge to researchers is how to automatically and effectively acquire relevant knowledge from huge size of biomedical literature. To address this issue, the biomedical text mining has become a new branch of bioinformatics and made great progress.. This survey introduces main approaches and relevant achievements in this research, including machine learning methods to named entity recognition, abbreviation and synonym recognition, relation extraction, as well as relevant resource constructions, international evaluations and academic gatherings, Some domestic researches are briefly described and, finally, prospective developments in the near future are anticipated.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136