位置:成果数据库 > 期刊 > 期刊详情页
基于压缩信息特征提取的滚动轴承故障诊断方法
  • ISSN号:1004-132X
  • 期刊名称:《中国机械工程》
  • 时间:0
  • 分类:TN911[电子电信—通信与信息系统;电子电信—信息与通信工程] TH17[机械工程—机械制造及自动化]
  • 作者机构:[1]燕山大学河北省测试计量技术及仪器重点实验室,秦皇岛066004, [2]北京精密机电控制设备研究所,北京100076
  • 相关基金:国家自然科学基金资助项目(51575472);河北省自然科学基金资助项目(E2015203356);河北省高等学校科学研究计划资助重点项目(ZD2015049);河北省留学人员科技活动择优资助项目(C2015005020)
中文摘要:

压缩感知作为一种新型压缩采样方法,利用信号稀疏特性以远低于奈奎斯特采样定理的采样速率压缩采集信号,减小数据采集、传输、存储的硬件压力。基于压缩感知框架下压缩采集的信号,提出了一种滚动轴承故障诊断新方法。该方法选择部分hadamard矩阵作为测量矩阵,将峭度因子、方差、波形因子作为敏感特征参量,不重构压缩测量量,直接利用压缩采集信息,提取敏感特征,然后通过PS0-SVM算法进行模式识别从而实现故障诊断。研究结果表明,在一定压缩比范围内,利用该方法能够在降低平均采样速率的同时用更少的数据量表现故障特征,实现滚动轴承故障诊断。

英文摘要:

As a new sampling method, compressed sensing samples with the signal sparse features were presented, which was far below the Nyquist sampling theorem. It might reduce generous re- quirements of data acquisition, transmission and storage hardware. Aiming at the signals from the compression perception within the framework, this paper proposed a new method for rolling bearing fault diagnoses. In this method, part of hadamard matrix was chosen as a measurement matrix, and kurtosis factor, variance and waveform factor as a sensitive parameters. So there was no need to re- build compression measurement and the gathering informations were utilized to extract sensitive char- acteristics directly, and then the PSO-SVM algorithm was used for pattern recognition so as to realize fault diagnoses. It is shown that within a certain range compression ratio, the method may use less a- mount of data of fault characteristics for rolling bearing fault diagnoses.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国机械工程》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:董仕节
  • 地址:湖北工业大学772信箱
  • 邮编:430068
  • 邮箱:paper@cmemo.org.cn
  • 电话:027-87646802
  • 国际标准刊号:ISSN:1004-132X
  • 国内统一刊号:ISSN:42-1294/TH
  • 邮发代号:38-10
  • 获奖情况:
  • 1997年获中国科协期刊一等奖,第二届全国优秀科技...,机械行业优秀期刊一等奖,1999年获首届国家期刊奖,2001年获首届湖北十大名刊,中国期刊方阵“双高”期刊,2003第二届国家期刊奖提名奖,百种中国杰出学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:50788