研究了几类效应代数的张量积及其可表示性.证明了两个效应代数关于不同的双态射的张量积是同构的,通过构造适当的双态射,给出效应代数{0,1}E、Cm(a)Cn(b)、C2(x)C4(y,z)及C2(x)C′4(y,z)的具体形式,结果表明:{0,1}E是可表示的当且仅当E是可表示的,Cm(a)Cn(b)与C2(x)C4(y,z)都是可表示的效应代数,但C2(x)C′4(y,z)是不可表示的效应代数.
Tensor products of several effect algebras and their representability are discussed.It is proved that any two tensor products of two effect algebras with respect to different bi-morphisms are isomorphic.By constructing proper bi-morphisms,the tensor products of effect algebras{0,1}and E,Cm(a)and Cn (b),C2 (x)and C4 (y,z),C2 (x)and C′4 (y,z)are given.Obtained results show that {0,1}E is representable if and only if E is representable,both Cm(a)Cn(b)and C2 (x)C4 (y,z)are representable,but C2 (x)C′4 (y,z)is not representable.