齿轮传动箱的故障征兆,可以通过不同的特征参量表现出来。传动箱工作过程中,由于响应信号成分复杂,提取其敏感的故障特征信息非常困难。故障程度、部位和类型等对特征参量的敏感程度差别很大,通过传统的特征提取和分析方法可以建立庞大的特征参量集。如何从众多的特征参量中确定可靠有效的故障特征参量,如何根据故障对特征参量的敏感程度优化筛选特征参量集,是实现实时在线故障诊断亟待解决的一个问题。针对传动箱故障特征选择问题,提出了基于粒子群优化(PSO)算法的特征选择方法。将粒子群优化技术用于研究传动箱振动响应信号的分析与处理,用于故障诊断特征参量集的提取与优化,形成了适合该齿轮传动箱的有效故障特征参量,从而建立了与齿轮传动箱故障现象密切相关的特征参量集。把此算法应用到齿轮传动箱故障诊断中,结果证明,该算法有很好的效果,提高了诊断精度,比常用的梯度下降算法具有更快的优化速度。