设(M,g)为紧致仿射Kaehler流形,仿射Kaehler度量g=∑fijdxidxj,作者证明了若f满足Δlog(det(fij))=0及Ricci曲率半正定,则M是R^n/Г,其中Г为R^n上离散等距子群.进一步,对光滑函数h,作者考虑M上的变分问题,其Euler-Lagrange方程为Alog(det(fij))=4h(det(fij))^-1/2,通过解这个四阶方程的一类边值问题,构造了定义在R^n上的欧氏完备仿射Kaehler流形.
Let (M, g) be a n dimenional compact affine Kaehler manifold, its Kaehler metric is g=∑fijdxidxj If Δlog(det(fij)) = 0 and its Ricci curvature Rij≥0, then M must be R^n/Г, where Г be a subgroup of isometric of R^n which acts freely and properly discontinuously on R^n. Moreover, for a smooth function h, a more general volume variational problem on M is considered, the Euler-Lagrange equation is Alog(det(fij ))= 4h (det(f/ij))^-1/2, by solving some boundary problem of the 4-order equation, many Euclidean complete affine Kaehler manifold are constructed.