在这份报纸,一个统一方法为重申的对数( LIL )和功能的 LIL ( FLIL )的法律基于更新过程( RP )的强壮的近似( SA )被开发,它确定在在数字、功能的形式的 RP 的吝啬的价值附近的增加的可变性的 asymptotic 率的大小分别地。为 GI/G/1 队列,方法为四个性能函数为 LIL 和 FLIL 限制提供完全的分析:队列长度,工作量,忙时间和闲散时间处理,盖住交通紧张划分的三政体。
In this paper, a unified method based on the strong approximation (SA) of renewal process (RP) is developed for the law of the iterated logarithm (LIL) and the functional LIL (FLIL), which quantify the magnitude of the asymptotic rate of the increasing variability around the mean value of the RP in numerical and functional forms respectively. For the GI/G/1 queue, the method provides a complete analysis for both the LIL and the FLIL limits for four performance functions: The queue length, workload, busy time and idle time processes, covering three regimes divided by the traffic intensity.