研究比较一般的阻尼波动方程:ψ"-△ψ+kψt=0.证明了无论阻尼系数多大皆可以通过控制边界上某一部分的振动过程使得整个区域内的波动系统在某种正则空间内从任意初始状态出发到达任意终止状态.证明过程主要思路是HUM方法,即先构造对偶系统:φ"-△φ-kφt=0,并证明当时间足够长而阻尼充分小时其边界法向能观性,然后将其边界法向导数作为控制加在阻尼控制系统的边界上以实现其精确能控.最后还要采用时空伸缩变换方法将小阻尼下的结果推广到任意阻尼情形.
Consider genearal wave equation with damp: ψ"- △ψ + kψt = 0. It was proven that one can steer it from any initial state to any target state in proper space by boundary control, no matter how large the damp coefficient was. The proof was mainly based on the HUM method and Domain Expansion Method.