位置:成果数据库 > 期刊 > 期刊详情页
约束非负矩阵分解框架下高维自适应粒子群端元提取
  • ISSN号:1007-4619
  • 期刊名称:遥感学报
  • 时间:2015
  • 页码:240-253
  • 分类:TP751.1[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]华南师范大学地理科学学院,广东广州510631
  • 相关基金:国家自然科学基金项目(编号:40901232,41171288); 华南师范大学地理科学学院研究生科研创新基金资助
  • 相关项目:人类视觉认知与多尺度遥感图像智能化处理方法研究
作者: 杨斌|罗文斐|
中文摘要:

传统基于约束非负矩阵分解NMF(Nonnegative Matrix Factorization)的高光谱端元提取算法一般存在两个问题:一方面,以固定惩罚系数方法处理端元提取的约束优化问题,难以较好权衡目标项与约束项间的关系,影响提取效果;另一方面,求解过程通常基于梯度算法,依赖于初始值和步长的设定,容易陷入局部最优。针对这些问题本文提出约束NMF框架下高维自适应粒子群端元提取算法HAPSO(High-dimension Adaptive Particle Swarm Optimization)。该算法在端元距离最小约束的NMF框架下,利用粒子群算法PSO替代原梯度算法以增强全局搜索能力;采用高维PSO方法解决了多波段高维问题,并结合种群信息构建自适应惩罚机制以实现端元提取中目标与约束的合理权衡。通过模拟影像和真实影像的实验,证实该算法与传统的NMF端元提取算法相比能够更合理地权衡约束和避免局部最优,具有较好的端元提取效果。

英文摘要:

Endmember extraction from hyper spectral data is an important procedure of hyper spectral unmixing. Nonnegative Matrix Factorization (NMF) has been widely used in the last few years for endmember extraction without assuming the presence of pure pixels. Many methods that incorporate different types of constraints into the NMF objective function have been proposed to accurately extract endmembers. However, traditional constrained NMF algorithms generally have two limitations. First, controlling the tradeoff between the accurate reconstruction and constraint well through the fixed penalty coefficient is difficult. Second, most traditional methods are usually trapped in a local optimum that renders the global optimum difficult to find. To overcome these constraints, we present a novel method called the High-dimension Adaptive Particle Swarm Optimization (HAPSO) for endmember extraction based on the minimum distance constrained NMF (MDC-NMF) scheme. HAPSO enhances the global search ability through PSO. Two key improvements--the high-dimensional PSO and adaptive penalty coefficient method based on swarm informa- tion-are considered. The standard PSO algorithm particularly suffers from the "curse of dimensionality", such that it is more likely to plunge into local optima as the dimensionality of the search space increases. To overcome this problem, high-dimensional PSO divides the complex high-dimensional constrained NMF problem into several simple low-dimensional sub problems according to the characteristics of objective function and hyper spectral data. Thus, each particle in the swarm can search for increasingly accurate positions in a detailed manner that significantly improves the accuracy of the results. Furthermore, particle information, such as the positions and feasibility of the PSO algorithm, can be easily applied to balance the search bias between objective functions and constraints. Thus, this study proposes an adaptive penalty coefficient method according to the proportion of feasible solut

同期刊论文项目
期刊论文 18 会议论文 11 专利 1 著作 1
同项目期刊论文
期刊信息
  • 《遥感学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国地理学会环境遥感分会 中国科学院遥感应用研究所
  • 主编:顾行发
  • 地址:北京市安外大屯路中国科学院遥感与地球研究所
  • 邮编:100101
  • 邮箱:jrs@irsa.ac.cn
  • 电话:010-64806643
  • 国际标准刊号:ISSN:1007-4619
  • 国内统一刊号:ISSN:11-3841/TP
  • 邮发代号:82-324
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:16827