在一个细胞的酒吧中的冲击波的繁殖被收养二个理想化的材料模特儿,系统地在连续统固体的框架学习 viz。动态僵硬,非常塑料,锁住(D-R-PP-L ) 模型和动态僵硬、线性变硬的塑料,锁住(D-R-LHP-L ) 当模特儿,两个都在材料性质上考虑紧张率的效果。与这二个模型相关的冲击波速度被导出。与起始的长度 L 0 和侵犯到一个僵硬目标上的起始的速度 v i 考虑用如此的材料之一做的一个酒吧的盒子。压力,紧张,粒子速度,越过冲击波的特定的内部精力和冲击波的 cease 距离的变化是全坚定的经分解。特别地精力保存条件和由黝黑的等求婚了的运动学的存在条件。(2005 ) 是 re-examined,证明精力保存条件和作为结果的批评速度,即当影响速度在这批评速度上面时,吃惊能仅仅在 R-PP-L 被产生并且支撑酒吧,是不正确的。相反与有弹性的变丑,变硬紧张并且细胞的材料的紧张率敏感正在被考虑,重新定义是适当的一第一并且为在细胞的固体的冲击波的存在和繁殖的第二批评影响速度。为在 D-R-LHP-L 细胞的材料宣传的冲击波从基本关系开始,为相反地为细胞的材料决定动态压力紧张曲线的一个新方法被建议。由例如泰勒的联合使用,酒吧和 Hopkinson 压力酒吧影响试验性的技术,铝泡沫的动态压力紧张曲线能被决定。最后,处于这个一个维的压力状态的吃惊理论的这新明确的表达能处于一个一个维的种类状态被概括到震动,这被表明,即为细胞的材料上的板影响的格,由简单地做有弹性、塑料的常数的合适的代替。
The propagation of shock waves in a cellular bar is systematically studied in the framework of continuum solids by adopting two idealized material models, viz. the dynamic rigid, perfectly plastic, locking (D-R-PP-L) model and the dynamic rigid, linear hardening plastic, locking (D-R-LHP-L) model, both considering the effects of strain-rate on the material properties. The shock wave speed relevant to these two models is derived. Consider the case of a bar made of one of such material with initial length L 0 and initial velocity v i impinging onto a rigid target. The variations of the stress, strain, particle velocity, specific internal energy across the shock wave and the cease distance of shock wave are all determined analytically. In particular the "energy conservation condition" and the "kinematic existence condition" as proposed by Tan et al. (2005) is re-examined, showing that the "energy conservation condition" and the consequent "critical velocity", i.e. the shock can only be generated and sustained in R-PP-L bars when the impact velocity is above this critical velocity, is incorrect. Instead, with elastic deformation, strain-hardening and strain-rate sensitivity of the cellular materials being considered, it is appropriate to redefine a first and a second critical impact velocity for the existence and propagation of shock waves in cellular solids. Starting from the basic relations for shock wave propagating in D-R-LHP-L cellular materials, a new method for inversely determining the dynamic stress-strain curve for cellular materials is proposed. By using e.g. a combination of Taylor bar and Hopkinson pressure bar impact experimental technique, the dynamic stress-strain curve of aluminum foam could bedetermined. Finally, it is demonstrated that this new formulation of shock theory in this one-dimensional stress state can be generalized to shocks in a one-dimensional strain state, i.e. for the case of plate impact on cellular materials, by simply making proper replacements of the