位置:成果数据库 > 期刊 > 期刊详情页
结合类别偏好信息的item-based协同过滤算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]上海电力学院经济与管理学院,上海201300, [2]浙江师范大学经济与管理学院,浙江金华321004
  • 相关基金:国家自然科学基金资助项目(71201145);上海市教育委员会科研创新资助项目(15ZS064);上海电力学院科研基金资助项目(K2014-037);上海高校青年教师培养资助计划(zzsdl15115)
中文摘要:

传统的基于项目的协同过滤算法离线计算项目相似性,提高了在线推荐速度,但该算法仍然不能解决数据稀疏性所带来的问题,计算出的项目相似性准确度较差,影响了推荐质量。针对这一问题,提出了一种结合类别偏好信息的协同过滤算法。定义了类别偏好相似性,采用类别偏好相似性方法为目标项目找出一组类别偏好相似的候选邻居,在候选邻居中搜寻最近邻,排除了与目标项目共同评分较少项目的干扰,从整体上提高了最近邻搜寻的准确性。在Movie Lens数据集上进行了实验,实验结果表明,新算法的推荐质量较传统的基于项目的协同过滤算法有显著提高。

英文摘要:

The traditional item-based collaborative filtering( CF) algorithm computes item-item similarity offline,so it enhances the real-time performance of recommender system. However,item-based CF algorithm still suffers from the data sparsity problem,as a result that the recommendation quality is poor. To address this issue,this paper proposed a novel CF algorithm combined with class preference information. The proposed algorithm first found out candidate neighbors who were similar to the target item in class preference. Then it searched for nearest neighbors in the candidate neighbor set,which eliminated the interference of the items those had few co-ratings with the target item. Experimental results based on Movie Lens dataset show that the recommendation quality of the new algorithm is significantly improved compared with traditional item-based CF algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049