本文考察Hilbert空间H上单射单边加权移位算子T的局部落,主要得到以下两个结果:(1)σT(x)=σT(e0),任意x=∑i=m^nαiei≠0,其中{ek}k〉0^∞是H的正规正交基,m,n是非负整数;(2)若加权移位算子T的权序列最终递增,则对任意非零向量x∈H,有σT(X)=σ(T).
We study the local spectrum of injective unilateral weighted shift operator T on Hilbert space H, and get two main results as following: (1) σT(x)=σT(e0),arbitary x=∑i=m^nαiei≠0, where {ek}k〉0^∞ is an orthonormal basis of H, m, n∈N; (2) If the weighted sequence of T is eventually increasing, then for every nonzero vectorx∈H, we have σT(X)=σ(T)