在这份报纸,一个消除偏爱的 subspace 鉴定方法为易于的工业应用被建议给噪音涂颜色。基于两倍直角的设计,一个鉴定算法被开发为植物的扩大 observability 矩阵的一致评价消除有颜色的噪音的影响州空间的模型。一条移动不变的途径然后被给从估计的扩大 observability 矩阵检索系统矩阵。为扩大 observability 矩阵的一致评价的坚持的刺激条件被分析。而且,一个数字算法被给计算估计的扩大 observability 矩阵的评价错误。二个解说性的例子被给表明建议方法的有效性和优点。
In this paper, a bias-eliminated subspace identification method is proposed for industrial applications subject to colored noise. Based on double orthogonal projections, an identification algorithm is developed to eliminate the influence of colored noise for consistent estimation of the extended observability matrix of the plant state-space model. A shift-invariant approach is then given to retrieve the system matrices from the estimated extended observability matrix. The persistent excitation condition for consistent estimation of the extended observability matrix is analyzed. Moreover, a numerical algorithm is given to compute the estimation error of the estimated extended observability matrix. Two illustrative examples are given to demonstrate the effectiveness and merit of the proposed method.