位置:成果数据库 > 期刊 > 期刊详情页
模型参数未知时的CPHD多目标跟踪方法
  • ISSN号:1001-2400
  • 期刊名称:《西安电子科技大学学报》
  • 时间:0
  • 分类:TN953[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:[1]西安电子科技大学电子工程学院,陕西西安710071, [2]中国人民解放军95980部队,湖北寰阳441000, [3]商洛学院电子信息与电气工程学院,陕西商洛726000
  • 相关基金:国家自然科学基金资助项目(61372003); 国家自然科学基金青年资金资助项目(61301289)
中文摘要:

针对现有的多目标跟踪方法中,检测概率和量测噪声协方差等模型参数未知时目标跟踪性能下降的问题,提出了一种联合估计检测概率和量测噪声协方差的势概率假设密度(cardinalized probability hypothesis density ,CPHD)目标跟踪方法。首先对多参数未知的多目标跟踪问题进行建模,将检测概率看作是某个分布中的变量,继而可以通过估计该分布的均值来作为检测概率,再利用变分贝叶斯方法对量测噪声协方差进行估计,最后给出了算法的高斯实现。仿真结果表明,所提算法在检测概率和量测噪声协方差联合未知环境下具有较好的目标跟踪性能。

英文摘要:

Since the multi-object tracking performance of the traditional method will decline with unknown model parameters, a CPHD target tracking algorithm is proposed to jointly estimate the detection probability and measurement noise covariance. Firstly, for model the unknown parameters of multiple targets tracking, the detection probability is considered as a variable in a distribution. The detection probability can be obtained by estimating the mean of the distribution. Then, the Variational Bayesian method is used to estimate the covariance of the measurement noise. Finally, the Gaussian implementation of this algorithm is presented. Simulation results show that the algorithm has good tracking performance under jointly unknown detection probability and the covariance of the measurement noise.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安电子科技大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:西安电子科技大学
  • 主编:廖桂生
  • 地址:西安市太白南路2号349信箱
  • 邮编:710073
  • 邮箱:xuebao@mail.xidian.edu.cn
  • 电话:029-88202853
  • 国际标准刊号:ISSN:1001-2400
  • 国内统一刊号:ISSN:61-1076/TN
  • 邮发代号:
  • 获奖情况:
  • 曾13次荣获省部级优秀期刊荣誉和优秀编辑质量奖,2006年荣获首届中国高校优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12591