位置:成果数据库 > 期刊 > 期刊详情页
混沌信号的压缩感知去噪
  • ISSN号:1000-3290
  • 期刊名称:《物理学报》
  • 时间:0
  • 分类:TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]东莞理工学院计算机学院,东莞523808, [2]华南理工大学电子与信息学院,广州510641
  • 相关基金:国家自然科学基金(批准号:61170216,61372082)资助的课题.
中文摘要:

对非线性时间序列进行噪声抑制是从中提取有效信息的前提.混沌信号的去噪算法不仅要使滤波后的信号具有较高的信噪比,也要具有较好的不确定性.从压缩感知的角度出发,提出了一种新的噪声抑制方法.该方法包括估计噪声方差,以及依据动态的稀疏度将观测值往确定的过完备字典上投影.仿真实验表明,该方法比常用的小波阂值法和局部曲线拟合法具有更高的输出信噪比,而原始信号的混沌特性也能得到较大程度的恢复.

英文摘要:

Nonlinear time series denoising is the premise for extracting useful information from an observable, for the applica- tions in analyzing natural chaotic signals or achieving chaotic signal synchronizations. A good chaotic signal denoising algorithm processes not only a high signal-to-noise ratio (SNR), but also a good unpredictability of a signal. Starting from the compressed sensing perspective, in this work we provide a novel filtering algorithm for chaotic flows. The first step is to estimate the strength of the noise variance, which is not explicitly provided by any blind algorithm. Then the second step is to construct a deterministic projection matrix, whose columns are polynomials of different orders, which are sampled from the Maclaurin series. Since the noise variance is provided from the first step, then a sparsity level with regard to this signal can be fully constructed, and this sparsity value in conjunction with the orthogonal matching pursuit algorithm is used to recover the original signal. Our method can be regarded as an extension to the local curve fitting algorithm, where the extension lies in allowing the algorithm to choose a wider range of polynomial orders, not just those of low orders. In the analysis of our algorithm, the correlation coefficient of the proposed projection matrix is given, and the reason for shrinking the sparsity when the noise variance increases is also presented, which emphasizes that there is a larger probability of error column selection with larger noise variance. In the simulation, we compare the denoising performance of our algorithm with those of the wavelet shrinking algorithm and the local curve fitting algorithm. In terms of SNR improvement for the Lorenz signal, the proposed algorithm outperforms the local curve fitting method in an input SNR range from 0 dB to 20 dB. And this superiority also exists if the input SNR is larger than 9 dB when compared with the wavelet methods. A similar performance also exists concerning the R6ssler chaotic system. The last

同期刊论文项目
同项目期刊论文
期刊信息
  • 《物理学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国物理学会 中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京603信箱(中国科学院物理研究所)
  • 邮编:100190
  • 邮箱:apsoffice@iphy.ac.cn
  • 电话:010-82649026
  • 国际标准刊号:ISSN:1000-3290
  • 国内统一刊号:ISSN:11-1958/O4
  • 邮发代号:2-425
  • 获奖情况:
  • 1999年首届国家期刊奖,2000年中科院优秀期刊特等奖,2001年科技期刊最高方阵队双高期刊居中国期刊第12位
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:49876