为了提高播种机对复杂地块的自适应能力,提升播种机的播种精度和播种效率,提出了适合精播机的基于子区域的折返全区域覆盖路径规划方法,并对播种机的排肥器和排种器进行了改进,以适应自动路径规划的需要。为了优化基于子区域的路径搜索方法,使用人工势场和遗传算法对寻优方法进行了优化,提高了算法的效率。为了测试该方法的有效性和可靠性,将路径规划系统安装到了播种机械上,通过对播种的测试发现,该方法实现了复杂地块播种的全区域覆盖,并且可以有效地躲避障碍物。对3种不同的算法进行对比测试发现:基于遗传算法的子区域路径规划模型的寻优效果最佳,其覆盖面积大,转弯次数少,用时少,最短时间为11.25 min,仅为其他算法时间的1/2,路径划分效率较高,满足智能化精密播种机的需求,可以在精密播种机的路径规划系统中使用。
In order to improve the adaptive ability of the planter of complex block, enhance the sowing efficiency of planter seeding accuracy, it put forward suitable for precision seeding machine in sub regional exhumation of full area coverage path planning method based on the seeder row fertilizer.The seed metering device was improved so as to adapt to the need of automatic path planning.In order to optimize the path search method based on sub region, the artificial po-tential field and genetic algorithm are used to optimize the optimization method, which improves the efficiency of the algo-rithm.For the validity and reliability of the test method, path planning system is installed in the planting machinery. Through the seeding test, the method realized complex plots sown with the full area coverage and obstacle avoidance.On the three different algorithms for comparison tests,it was found that optimization effect is the best for its large coverage ar-ea based on genetic algorithm of sub regional model for path planning, turning times less, fewer, the shortest time only 11.25min, only for 1/2 of the other algorithm, path division of higher efficiency and meet the intelligent demand of pre-cision seeding machine, which can be used in path planning system in precision seeder.