位置:成果数据库 > 期刊 > 期刊详情页
基于生命周期的二元蚁群优化算法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]合肥工业大学管理学院,合肥230009, [2]合肥工业大学过程优化与智能决策教育部重点实验室,合肥230009
  • 相关基金:国家自然科学基金项目(No.71271071,71301041); 国家863云制造主题项目(No.2011AA040501); 中央高校基本科研业务费专项资金项目(No.2012HGBZ0208,2011HGBZ1310); 安徽省教育厅自然科学研究项目(No.KJ2013Z089)资助
中文摘要:

将自然生态系统中生物生命周期的思想引入二元蚁群优化算法中,通过对蚂蚁设置相应的营养阈值而执行繁殖、迁徙、死亡操作,从而保持种群的动态多样性,进而克服二元蚁群优化算法易陷入局部最优的缺陷,然后结合分形维数将该算法应用于属性约简问题中,通过UCI中的6个数据集进行测试,结果表明该算法具有较好的可行性和有效性。

英文摘要:

The biological life cycle in natural ecosystem is introduced into binary ant colony optimization algorithm, and the main idea is to execute breeding, migrating and dying operations by setting relevant nutritious threshold value to the ants. Thus, the dynamic diversity of the population is maintained and the drawback that binary ant colony optimization algorithm easily traps in local optimum is overcome. The proposed algorithm, lifecycle-based binary ant colony optimization algorithm (LCBBACO), is combined with fractal dimension to attribute reduction problem. The experimental results on 6 UCI datasets show that the method has preferable feasibility and effectiveness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169