研究了存在内禀退相干时,对于不同的系统初态,具有DM相互作用和各向异性的三粒子XXZ海森伯模型的对纠缠动力学特性.得出了一些结论:系统的对纠缠度与各向异性参数?无关,但内禀退相干对系统的纠缠有明显的抑制作用;在内禀退相干存在时,若系统初态为纠缠态,选择合适的DM相互作用的参数,系统的对纠缠有一个非零的稳定值;系统初态为分离态时,系统的对纠缠会随时间震荡衰减,并且每次震荡会出现纠缠突然死亡现象,系统的对纠缠最终达到解纠缠状态.因此,选择合适的系统初态和DM相互作用参数可以有效地控制系统的对纠缠.
With considering the intrinsic decoherence, the dynamic behaviors of quantum entanglement in a three-qubit XXZ Heisenberg system with Dzyaloshinskii-Moriya(DM) interaction and anisotropy for different initial states are investigated.The research result shows that the anisotropy parameter does not affect the system entanglement, however, the intrinsic decoherence has obvious inhibitory effect on entanglement. When the initial state of system is an entangled state, we can obtain the stable value of entanglement by adjusting DM interaction parameters appropriately. As the system initial state is a separation state, entanglement oscillates, and the amplitude of oscillation decays with time periodically, and there will appear the death phenomenon after each oscillation, and with time going on, its concurrence will be zero.When the initial state is entangled, by choosing the proper DM parameter, the three pairs of entanglements oscillate with time and eventually approach to a steady value. The increase of accelerates the decay of concurrence. When the initial state is separated, entanglement oscillates, and the amplitude of oscillation decays with time periodically,and there will appear the death phenomenon after each oscillation, with time going on, its concurrence will be zero.Therefore, the proper initial state and DM interaction parameters can control the concurrence effectively under the intrinsic decoherence, thereby obtaining the preferable entanglement resource.