位置:成果数据库 > 期刊 > 期刊详情页
基于覆盖的多标记学习方法研究
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安徽大学计算智能与信号处理教育部重点实验室,合肥230039, [2]安徽大学计算机科学与技术学院,合肥230039
  • 相关基金:国家自然科学基金No.60675031); 安徽省高等学校优秀青年人才基金项目(No.2009SQRZ020ZD); 安徽大学211工程学术创新团队
中文摘要:

多标记学习是实际应用中的一类常见问题,覆盖算法在单标记学习中表现出了优秀的性能,但无法处理多标记情况。将覆盖算法推广到多标记学习中,针对多标记学习的特点和评价指标,对算法的学习和构造过程进行了改造,给出待分类样本对各类别的隶属度。将算法应用于基因数据集和自然场景数据集的学习中,实验结果表明算法能够取得较好的分类效果,且相比于大多数同类算法有更高的性能。

英文摘要:

Multi-label learning is a common problem in real application.Covering algorithm performs well with single-label learning but can not deal with multi-label learning.In this paper,covering algorithm is extended to Multi-label Learning Covering Algorithm(MLCA).Training and testing procedures are adapted to the characteristics of multi-label learning problem,and the membership function of sample is calculated.MLCA is applied to the gene classification and nature scene classification and the results show that MLCA is effective and has better performance than many other learning algorithms in the field.

同期刊论文项目
期刊论文 76 会议论文 15 专利 4 著作 1
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887