为了实现高温超导(HTS)磁浮车的无接触的制动,本文提出一种基于振动耗能的电磁制动方法。在永磁轨道与磁浮车的悬浮气隙中增加一层固定在车体上的电磁线圈,以线圈通电的方式改变磁场分布而得到在轨道上方的磁场分布不均衡的效果。磁浮车体的运动方向上的动能将转化到与其运行垂直方向上的阻尼振动耗掉而使车体减速,其阻尼系数通过闭合线圈的方式改变。以真空管道中运行的HTS磁悬浮车为例,用理论分析得出所加电磁线圈的自阻值与外接电阻的阻值之和与耗能的关系,最后在西南交通大学真空管道HTS磁浮系统实验平台上实验验证了该方法的合理性与有效性,为将来的真空管道磁浮交通系统的设计提供参考。
A novel technique was developed to brake,in a non-contact mode,the high temperature superconducting(HTS)maglev train traveling in evacuated tube transport(ETT).In electromagnetic braking,the interaction between the dedicated coils,installed at the bottom of the maglev train,and the magnetic flux,non-homogeneously distributed above the permanent guide-way,changes the longitudinal kinetic energy of the traveling train into transversal vibration energy,which is effectively exhausted in damped vibrations.The damping coefficient depends on the number of closed coils.The impact of the total resistance of the coils and external resistors on the energy loss of a HTS maglev train traveling in ETT was modeled and calculated.The newly-developed electromagnetic brake was tested in ETT experimental platform at Southwest Jiao-Tong University with satisfactory results.We suggest that the new electromagnetic brake may be of much technological interest.