位置:成果数据库 > 期刊 > 期刊详情页
基于改进朴素贝叶斯的Android恶意应用检测技术
  • ISSN号:1007-5321
  • 期刊名称:《北京邮电大学学报》
  • 时间:0
  • 分类:TP309[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京邮电大学信息安全中心,北京100876, [2]国家计算机网络应急技术处理协调中心,北京100029
  • 相关基金:国家自然科学基金项目(61272519); “十二五”国家科技支撑计划项目(2012BAH45B00)
中文摘要:

在对未知应用静态分析的基础上,提取Android Manifest.xml中申请的权限为特征,采用信息增益算法优化选择分类特征,再采用拉普拉斯校准、乘数取自然对数改进的朴素贝叶斯算法创建恶意应用分类器.通过十折交叉试验验证改进的朴素贝叶斯分类器的准度和精度较高,且通过信息增益优化选择的分类特征在保障准确率的情况下能有效提高检测效率.与k最近邻和k-Means分类器相比,改进的朴素贝叶斯分类器具有较好的分类效果.

英文摘要:

Permissions are extracted as features via static analysis. The information gain( IG) algorithm is applied to select significant features. The Nave Bayesian( NB) classifier is created which is improved through Laplace calibration and natural logarithm of multiplier. The results with 10-fold cross validation indicate that the improved NB classifier achieves higher accuracy and precision,and the selected features by IG algorithm improve the detection efficiency in ensuring the accuracy of the case. Comparing k-nearest neighbor( KNN) and k-Means classifier,NB classifier has good performance on validity,accuracy and efficiency.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京邮电大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京邮电大学
  • 主编:刘杰
  • 地址:北京海淀区西土城路10号195信箱
  • 邮编:100876
  • 邮箱:byxb@bupt.edu.cn
  • 电话:010-62281995 62282742
  • 国际标准刊号:ISSN:1007-5321
  • 国内统一刊号:ISSN:11-3570/TN
  • 邮发代号:2-648
  • 获奖情况:
  • 美国工程信息公司(Ei)数据库收录期刊,1999年全国优秀高等学校自然科学学报及教育部优秀...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7684