位置:成果数据库 > 期刊 > 期刊详情页
基于深度学习的人体行为识别
  • ISSN号:1671-8860
  • 期刊名称:《武汉大学学报:信息科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华中农业大学工学院,湖北武汉430079, [2]华中师范大学物理学院,湖北武汉430079, [3]中船重工集团公司第七二二研究所,湖北武汉430072, [4]华中农业大学理学院,湖北武汉430079
  • 相关基金:国家自然科学基金(11204099); 中央高校基本科研业务费专项资金(2014BQ083)
中文摘要:

为了识别公共区域等特定场所下的人体行为,提出了一种基于深度学习的人体行为识别方法。首先,预处理训练样本集和测试样本集中的所有图像,通过高斯混合模型提取出目标运动前景。其次,对训练样本集中各种目标行为建立样本库,定义不同类别的识别行为作为先验知识,用于训练深度学习网络。最后,结合深度学习所得到的网络模型,分类识别测试样本集中的各种行为,并将识别的结果和当前流行方法进行了比较。实验结果表明,该人体行为识别方法优于其它方法,平均识别率相比其他方法有较大的提高。

英文摘要:

To recognize human behaviors in public areas,a new method of recognition was proposed based on deep learning.First,we pre-processed all the images in training and test samples,and utilized GMM to extract moving objects.Then,we built sample sets of various behaviors,and defined different behaviors as priori knowledge to train a deep learning network.Finally,all kinds of behaviors based on the network model of deep learning were recognized.Experimental results demonstrated our method outperforms the existed methods,and the average recognition rate is 96.82%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉大学学报:信息科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉大学
  • 主编:刘经南
  • 地址:湖北武汉珞珈山
  • 邮编:430072
  • 邮箱:whuxxb@vip.163
  • 电话:027-68778045
  • 国际标准刊号:ISSN:1671-8860
  • 国内统一刊号:ISSN:42-1676/TN
  • 邮发代号:38-317
  • 获奖情况:
  • 全国优秀科技期刊,全国优秀高校自然科学学报一等奖,湖北省优秀期刊称号
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24217