设p是适合p≡1(mod81的奇素数.本文主要利用初等方法证明了椭圆曲线y2=px(x2+1)在P≡9(rood16)时没有正整数点(x,y);并且对于p≡1(mod16)的情况,给出了该椭圆曲线有整数点的两个判别条件.
Let p is an odd prime with p ≡1(mod 8). The main purpose of this paper is using the elementary methods to prove that if p ≡ 9(rood 16), then the elliptic curve y2≡ px(x2 + 1) has no positive integer point (x, y). Moreover, for p ≡ l(mod 16), two criterions for the elliptic curve has positive integer points are given.