位置:成果数据库 > 期刊 > 期刊详情页
融合显著信息的LDA极光图像分类
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安电子科技大学电子工程学院,陕西西安710071
  • 相关基金:国家自然科学基金(41031064,60902082);教育部留学回国人员科研启动基金;2010年海洋公益性行业科研专项经费(201005017);陕西省自然科学基础研究计划(2011JQ8019);中央高校基本科研业务费专项资金(K5051302008,K5051202048)
中文摘要:

美丽的极光形态各异,不同形态的极光蕴含不同的物理意义,所以研究极光图像的分类具有重要的科学价值.在LDA(1atent Dirichlet allocation)模型基础上提出了一种融合显著信息的LDA方法(LDA with saliency information,简称sI—LDA),利用极光图像的谱残差(spectral residual,简称SR)显著信息生成视觉字典,加强极光图像的语义信息,并将其用于极光图像的特征表示.最后,利用SVM分类器对极光图像进行分类.实验结果表明,所提出的算法获得了良好的分类结果.

英文摘要:

There are different shapes of auroras in the sky around the arctic pole and the antarctic pole and there are different physical meaning and significance for different auroras. Therefore, the research on classification of aurora images has significant scientific value. In this paper, an aurora image classification method based on LDA with saliency information (SI-LDA) is proposed. First, the salience information of aurora images is used to generate visual dictionary which enhances the semantic information of aurora images. Next, the aurora images are represented by SI-LDA. Finally, SVM is applied to classify aurora images. Experimental results show that the proposed method achieves high performance over other algorithms available.

同期刊论文项目
期刊论文 9 会议论文 9 获奖 5 专利 2 著作 1
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609