针对天空背景下红外弱小目标检测困难的情况,首先通过改进的形态学滤波目标增强方法对图像进行背景抑制与噪声去除,而后采用恒虚警检测方法(CFAR)对滤波后图像进行分割,获得候选点目标,然后采用行程目标标记的方法得到候选目标的位置信息、面积信息等,单帧图像检测之后,复杂的天空背景仍然会存在虚警。为了提高检测概率、降低虚警率,结合目标运动特性(包括运动轨迹、速度、加速度等)、灰度变化、面积变化等帧间相关性采用移动式管道滤波方法对序列图像候选目标做进一步判断。实验结果表明,该方法能有效地从复杂背景中检测出真实目标。
Against the difficult detection of dim small infrared targets in the sky background,in this paper,the improved morphological filtering target enhancement method is adopted for background suppression and noise removing,and then constant false alarm rate(CFAR)method is used to segment the filtered image to obtain candidate point targets,and get the position and area information of candidate point targets by adopting run-length target labeling method. After the single frame image detection, there are still false alarms in the complicated sky background. In order to improve the detection probability and reduce false alarm rate,the mobile pipeline filtering method is adopted to make further judgment for the candidate targets in sequential imag-es in combination with the correlation between image frames of the target motion characteristics(including trajectory,velocity, acceleration,etc),grey change,area change and so on. The experimental results show that the method proposed in this paper can accurately and quickly detect the true targets in the complex background.