该文提出了一种基于单通道多子孔径空频自适应处理的运动目标检测方法:首先给出了基于方位频谱划分获取子孔径的处理过程,构造出类似于多通道的子图像。详细分析了多子孔径空时等效信号的原理,将不同合成中心时刻的子孔径序列所获得的回波信号等效成同一时刻不同空间位置所获得的回波信号,利用时延差异来获取空间信息,建立起后续处理的2维信号模型。在此基础上,结合多通道杂波抑制的思想,提出了采用多子孔径间空频自适应处理实现杂波抑制与运动目标检测的算法。最后,仿真实验验证了该方法的有效性。
The space-frequency processing of sub-apertures that obtained from the single-antenna airborne SAR is proposed for the moving target detection.First the process of how to gain the sub-apertures is presented through the azimuth frequency processing.The sub-apertures that resemble the multi-channel are formed.Then the equivalent property for the space-time signal of the sub-apertures is particular analyzed.The echo signals of the sub-apertures gained in different synthesized center times are equal to the echo signals obtained from the same time and the different space positions.The time delay of the sub-aperture is used to gain the space information and the two-dimension signal model of the sub-apertures is established.Learned from the method of using multi-channels to suppress the clutter,the space-frequency adaptive processing of the sub-apertures is presented to realize the moving target detection and the clutter suppression.Finally,the simulation results demonstrate that the method is effective.