以Savitzky-Golay(SG)平滑筛选,主成分分析(PCA)分别结合有监督的线性判别分析(LDA)、无监督的系统聚类分析(HCA),应用于转基因甘蔗育种筛查的可见-近红外(Vis-NIR)无损检测。提出兼顾随机性、稳定性的定标、预测、检验框架;取田间种植处于伸长期甘蔗叶样品456个,具有Bt基因和Bar基因的转基因样品(阳)306个,非转基因样品(阴)150个;随机选取156个为检验集(阴性50、阳性106),余下为建模集(阴性100、阳性200,共300),建模集再随机划分为定标集(阴性50、阳性100,共150)、预测集(阴性50、阳性100,共150)共50次;扩充SG平滑点数,同时删除绝对值偏小的高阶导数模式,共264个平滑模式用于模型筛选;采用前3个主成分两两组合,再根据模型效果选出最优主成分组合;基于所有定标、预测集划分和SG平滑模式,建立SG-PCA-LDA和SG-PCA-HCA模型,根据平均预测效果优选参数,使模型具有稳定性;最后用检验集进行模型检验。经SG平滑后,PCA-LDA和PCA-HCA的建模精度、稳定性均显著改善;最优SG-PCA-LDA模型阳性、阴性样品检验识别率分别达到94.3%和96.0%;最优SG-PCA-HCA模型阳性、阴性样品检验识别率分别达到92.5%和98.0%。结果表明:Vis-NIR光谱模式识别结合SG平滑可用于转基因甘蔗叶的准确识别,提供了一种简便的转基因甘蔗育种筛查方法。