研究测度链T上边值问题[q(t)x^Δ(t)]^Δ+λf(t,Xσ(£))=0,t∈[a,σ(6)]∩T,αx(a)-βx^Δ(a)=0,γx((6))+δx^Δ(σ(b))=0,其中f:[a,σ(b)]×[0,∞)→[0,∞)是连续的,对f赋予一定的条件,通过应用锥上的不动点定理,得到在λ某个区间上边值问题正解的存在性定理。文中把原有的方程二阶部分从x^ΔΔ(t)推广到[q(t)x^Δ(t)]^Δ,这里要求q(t)在[a,σ(b)]上有界,恒正。
The boundary value problem[q(t)x^Δ(t)]^Δ+λf(t,Xσ(£))=0,t∈[a,σ(6)]∩T,αx(a)-βx^Δ(a)=0,γx((6))+δx^Δ(σ(b))=0 on the measure chain T is studied, where f:[a,σ(b)]×[0,∞)→[0,∞) is continuous. By using krasnoselskii fixed point theorem on cone, some conditions are imposed on f which ensure the existence of positive solution of the boundary value problem at the interval of λ. The results are extended from x^ΔΔ(t)+λf(t ,x^σ ( t ) ) =0 to [ q( t ) xΔ ( t ) ]Δ + λ f ( t , x^σ( t ) ) =0, where q(t) is bounded and positive for t∈ [a,σ(b)].