位置:成果数据库 > 期刊 > 期刊详情页
一种新的情感词汇语义倾向计算方法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001, [2]中国科学院计算技术研究所,北京100190
  • 相关基金:国家“九七三”重点基础研究发展计触基金项目(2004CB318109);国家自然科学基金项目(60803085)
中文摘要:

当前,人们越来越倾向于通过互联网(论坛、讨论组、博客)表达自己对事物的观点、意见.如何利用计算机自动、有效地挖掘这些信息是一个具有挑战性的问题,并且在企业智能分析、政府舆情分析等领域具有广阔的应用空间和发展前景.文本倾向分析就是以挖掘、分析文本中所包含的情感信息为目的的一种技术,它是传统的话题发现与跟踪研究的拓展和深化,并为其提供了新的思路和方法.文本倾向分析的基础是词语语义倾向计算.提出一个可扩展的词汇语义倾向计算框架,将词语语义倾向计算问题归结为优化问题.在算法实现上,首先利用多种词语相似度计算方法构建词语无向图;然后利用以“最小切分”为目标的目标函数对该图进行划分,并利用模拟退火算法进行求解.实验证明了该框架的合理性以及求解方法的有效性.

英文摘要:

At present, people have ever-increasing preference for the Internet for expressing their personal experiences and opinions on almost anything at review sites, forums, discussion groups, blogs, etc. Those user-generated content contains very valuable emotional information. How to mine those emotional information automatically and efficiently will hence be a very challenging question, as well as he promising in applications and development of enterprise business intelligence and public opinion survey and so on. Text-leveled sentiment analysis technology is considered as an extension and enhancement of traditional topic detecting and tracking (TDT) technology by adding some new approaches and ideas, which is based on word semantic orientation computing. In this paper, a novel scalable word semantic orientation computing framework is proposed, in which the word semantic orientation computing is transformed into the function optimization. As an instance of the proposed framework, the authors build an undirected graph in the use of word similarity computing technology first, and then partition the word-to-word graph by the idea of 'minimum-cut', thereby function optimization is adopted in this word semantic orientation computing framework and resolved by using simulated annealing algorithm. The experimental results prove that the proposed framework is reasonable and the algorithm performs better than those existing counterparts.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349