这篇论文讨论加速为解决非线性的抛物线的方程的含蓄的计划的反复的方法。二个新非线性的反复的方法由 theimplicit 明确的伪说出 -- 牛顿(IEQN ) 方法和衍生物免费的含蓄明确的伪 -- 牛顿(DFIEQN ) 方法被介绍,在哪个结果从 linearization 的线性方程能保存原来的部分微分方程的抛物线的特征。重复方法的反复的顺序能集成二次的联盟者到含蓄的计划的答案,这被证明。而且与 Jacobian 免费 Newton-Krylov (JFNK ) 方法相比, theDFIEQN 方法有一些优点,例如,它的实现是容易的,并且它与一个明确的系数矩阵给一个线性代数学的系统,以便线性(内部) 重复没被限制为 Krylov 方法。由 IEQN, DFIEQN, JFNK 和 Picard 重复方法的计算结果在理论的证实和这些方法的表演的比较被介绍。
This paper discusses the accelerating of nonlinear parabolic equations. Two iterative methods for solving the implicit scheme new nonlinear iterative methods named by the implicit-explicit quasi-Newton (IEQN) method and the derivative free implicit-explicit quasi-Newton (DFIEQN) method are introduced, in which the resulting linear equations from the linearization can preserve the parabolic characteristics of the original partial differential equations. It is proved that the iterative sequence of the iteration method can converge to the solution of the implicit scheme quadratically. Moreover, compared with the Jacobian Free Newton-Krylov (JFNK) method, the DFIEQN method has some advantages, e.g., its implementation is easy, and it gives a linear algebraic system with an explicit coefficient matrix, so that the linear (inner) iteration is not restricted to the Krylov method. Computational results by the IEQN, DFIEQN, JFNK and Picard iteration methods are presented in confirmation of the theory and comparison of the performance of these methods.