位置:成果数据库 > 期刊 > 期刊详情页
一种基于大项集重用的序列模式挖掘算法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国防科学技术大学计算机学院,长沙410073
  • 相关基金:国家自然科学基金项目(60573136);国家“八六三”高技术研究发展计划基金项目(2003AA142010)
中文摘要:

在重新定义序列模式的长度、增加了序列模式的挖掘粒度的基础上,提出一种基于大项集重用的序列模式挖掘算法HVSM.该算法采用垂直位图法表示数据库,先横向扩展项集,将挖掘出的所有大项集组成一大序列项集,再纵向扩展序列,将每个一大序列项集作为“集成块”,在挖掘k大序列时重用大项集.并以兄弟节点为种子生成候选大序列,利用1st—TID对支持度进行计数.实验表明,对于大规模事务数据库,该算法有效地提高了挖掘效率.

英文摘要:

A first-horizontally-last-vertically scanning database sequential pattern mining algorithm (HVSM) based on large-itemset reuse is presented in this paper. The algorithm redefines the length of sequential pattern, which increases the granularity of mining sequential pattern. While considering a database as a vertical bitmap, the algorithm first extends the itemset horizontally, and digs out all the large-itemsets which are called one-large-sequence itemset. Then the algorithm extends the sequence vertically, and takes each one-large-sequence itemset as a "container" for mining k-large-sequence, and generates candidate large sequence by means of taking brother-nodes as child-nodes, and counts the support by recording the 1st-TID. The experiments show that the HVSM can find out frequent sequences faster than the SPAM algorithm for mining the medium-sized and large transaction databases.

同期刊论文项目
期刊论文 18 会议论文 5
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349