位置:成果数据库 > 期刊 > 期刊详情页
Theoretical study on setup of expanded-base pile considering cavity contraction
  • ISSN号:1000-6915
  • 期刊名称:《岩石力学与工程学报》
  • 时间:0
  • 分类:TU473.1[建筑科学—结构工程;建筑科学—土工工程]
  • 作者机构:Faculty of Architectural, Civil Engineering and Environment, Ningbo University
  • 相关基金:Project(LQ15E080002)supported by Zhejiang Provincial Natural Science Foundation of China;Projects(51508282;51478228)supported by the National Natural Science Foundation of China
中文摘要:

When an expanded-base pile is installed into ground, the cavity expansion associated with penetration of the enlarged pile base is followed by cavity contraction along the smaller-diameter pile shaft. In order to account for the influence of cavity contraction on the change of bearing capacity of expanded-base pile, a theoretical calculation methodology, predicting the setup of expanded-base pile, was established by employing the cavity contraction theory to estimate the shaft resistance of expanded-base pile, and horizontal consolidation theory to predict the dissipation of excess pore pressure. Finally, the numerical solutions for the setup of expanded-base pile were obtained. The parametric study about the influence of cavity contraction on setup of expanded-base pile was carried out, while a field test was introduced. The parametric study shows that the decrements in radial pressure and the maximum pore water pressure after considering cavity contraction are increased as the expanded ratio(base diameter/shaft diameter) and rigidity index of soil are raised. The comparison between calculated and measured values shows that the calculated results of ultimate bearing capacity for expanded-base pile considering cavity contraction agree well with the measured values; however, the computations ignoring cavity contraction are 2.5-3.0 times the measured values.

英文摘要:

When an expanded-base pile is installed into ground, the cavity expansion associated with penetration of the enlarged pile base is followed by cavity contraction along the smaller-diameter pile shaft. In order to account for the influence of cavity contraction on the change of bearing capacity of expanded-base pile, a theoretical calculation methodology, predicting the setup of expanded-base pile, was established by employing the cavity contraction theory to estimate the shaft resistance of expanded-base pile, and horizontal consolidation theory to predict the dissipation of excess pore pressure. Finally, the numerical solutions for the setup of expanded-base pile were obtained. The parametric study about the influence of cavity contraction on setup of expanded-base pile was carried out, while a field test was introduced. The parametric study shows that the decrements in radial pressure and the maximum pore water pressure after considering cavity contraction are increased as the expanded ratio(base diameter/shaft diameter) and rigidity index of soil are raised. The comparison between calculated and measured values shows that the calculated results of ultimate bearing capacity for expanded-base pile considering cavity contraction agree well with the measured values; however, the computations ignoring cavity contraction are 2.5-3.0 times the measured values.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《岩石力学与工程学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国岩石力学与工程学会
  • 主编:冯夏庭
  • 地址:武汉市武昌小洪山中国科学院武汉岩土力学研究所
  • 邮编:430071
  • 邮箱:rock@whrsm.ac.cn
  • 电话:027-87199250
  • 国际标准刊号:ISSN:1000-6915
  • 国内统一刊号:ISSN:42-1397/O3
  • 邮发代号:38-315
  • 获奖情况:
  • 全国中文核心期刊,中国科协优秀期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:75823