空间调制干涉光谱成像仪对地物光谱辐射信息以目标像元干涉图的形式进行采集,系统定标后,复原的光谱图能定量地反映地物目标实际对太阳光的漫反射特性。分析了空间调制干涉光谱成像仪的定标原理,经计算推导和实验,介绍了空间调制干涉光谱仪的星上定标系统,并进行了实验室光谱测试和航天元件的多种环境测试,解决了空间调制干涉光谱仪星上定标技术的关键组件定标光源、光谱滤光片、积分球组件的技术难点,对定标卤钨灯进行了辐射稳定性测试,光谱滤光片进行了光学性能测试和粒子辐照试验,星上积分球组件进行了环境力学试验和热真空实验,均得到了较好的结果。通过全孔径、部分视场的相对光谱定标,能够得到星上定标光谱和干涉图,在经过不同条件下复原光谱比较后,证明此星上定标系统是稳定可靠的。
Spatially modulated imaging Fourier transform spectrometer (SMIFTS) was an instrument that depended on interference, and after calibration, the reconstruction spectrum can quantificationally reflect the diffuse reflection of target under sunshine. On-board calibration of SMIFTS confirmed the change of SMIFTS according to relative spectrum calibration, inspected long-time attenuation of SMIFTS optical system, and corrected export data of SMIFTS. According to the requirement of remote sensor application, it must stay in vacuum environment for a long time. As a radiant standard, the stability of lamp-house in long time is the most important characteristic of on-board calibration system. By calculation and experimentation, analyses of onboard calibration of SMIFTS, and testing spaceflight environment characteristic of on-board calibration, the difficulty in the key parts of on-board calibration of SMIFTS such as lamp-house, spectrum filter and integrating sphere was solved. According to the radiation-time stability testing for lamp-bouse and optics, particle-radiation testing, environmental-mechanics testing and hot vacuum examination, good result was obtained. By whole-aperture and part-field comparative wavelength calibration, the spectrum curve and before-launch interferogram were obtained. After comparison with reconstruction spectrum under different condition, the stability and credibility of SMIFTS on-board calibration system was proved.