位置:成果数据库 > 期刊 > 期刊详情页
基于视皮层V1模型的随机点视频序列运动特征提取
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:空军工程大学航空航天工程学院,西安710038
  • 相关基金:国家自然科学基金资助项目(61372167,61379104)
中文摘要:

针对复杂场景中视频序列目标运动特征提取困难的问题,借鉴生物视觉系统对视频动态目标的运动感知机制,改进初级视皮层(V1)细胞模型,提出一种基于生物视皮层机制的视频运动特征提取方法.采用时空滤波器与半平方加归一化分别模拟神经元感受野的线性与非线性特性,再通过在输出权值中加入方向选择性调节参数得到普适性的V1细胞模型,从而解决传统模型方向选择性单一、多方向选择能力偏弱的问题.仿真结果表明所提模型模拟输出与生物实验数据较为吻合,能够模拟不同方向选择性的V1细胞,对复杂运动形态的随机点视频序列具有良好的运动特征提取能力.依靠该方法可以为处理特征光流信息提供新的思路,进而实现对视频序列目标的运动特征提取和有效跟踪.

英文摘要:

Focusing on the issue of target motion feature extraction of video sequences in complex scene, and referring to the motion perception of biological vision system to the moving video targets, the traditional primary Visual cortex( V1) cell model of visual cortex was improved and a novel method of random-dot motion feature extraction based on the mechanism of biological visual cortex was proposed. Firstly, the spatial-temporal filter and half-squaring operation combined with normalization were adopted to simulate the linearity and nonlinearity of neuron’s receptive field. Then, a universal V1 cell model was obtained by adding a directional selectivity adjustable parameter to the output weight, which solved the problem of the single direction selectivity and the disability to respond correctly to multi-direction motion in the traditional model. The simulation results show that the analog outputs of proposed model are almost consistent with the experimental data of biology,which indicates that the proposed model can simulate the V1 neurons of different direction selectivity and extract motion features well from random-dot video sequences with complex motion morphs. The proposed method can provide new idea for processing feature information of optical flow, extract motion feature of video sequence and track its object effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679