位置:成果数据库 > 期刊 > 期刊详情页
基于神经网络预测液力透平压头和效率
  • ISSN号:1673-5196
  • 期刊名称:兰州理工大学学报
  • 时间:2015.6.8
  • 页码:49-54
  • 分类:TH322[机械工程—机械制造及自动化]
  • 作者机构:[1]兰州理工大学能源与动力工程学院,甘肃兰州730050, [2]兰州理工大学甘肃省流体机械及系统重点实验室,甘肃兰州730050
  • 相关基金:国家自然科学基金(51169010); “十二·五”国家科技支撑计划(2012BAA08B05); 甘肃省青年科技基金(145RJYA312)
  • 相关项目:液体能量回收透平内气液两相非定常流动机理和水力学特性研究
中文摘要:

建立BP和GA-BP神经网络预测离心泵反转作液力透平的压头和效率.用63台离心泵作透平的参数作为训练两个网络的样本,以泵的叶轮出口直径、叶片包、出口宽度、出口安放角、叶片数和比转速作网络输入层,透平压头和效率作输出层.用6组样本外的数据测试经训练后的两个网络的预测能力,并做网络预测值与试验值的相关性和线性回归分析.结果表明,BP网络对压头和效率预测的平均误差为5.33%和0.86%,GA-BP网络对压头和效率预测的平均误差为3.56%和0.46%.GA-BP网络预测精度高,预测结果与实验值相关性强,预测所用时间为BP网络的1/3,更适合做泵反转作液力透平的性能预测.

英文摘要:

BP and GA-BP neural networks were established to predict the head and efficiency of centrifugal pumps working as hydraulic turbine.The parameters of 63 centrifugal pumps as turbines were used as sample for training above-mentioned two neural networks.The outlet diameter of impeller,blade wrap angle,blade outlet width,blade outlet angle,number of blade,and specific speed of pump were taken as input layer of the network and the head and efficiency of the turbine were taken as output layer.Six groups of extra data beyond the samples were used to test the prediction ability of the two already trained neural networks.The analysis of the correlativity and linear regression of predicted values to experimental values was made.The result showed that the average error of head and efficiency predicted with BP network was respectively 5.33%and 0.85%and the average error of head and efficiency predicted with GA-BP network was 3.56% and 0.46%,respectively.GA-BP network had higher predictive accuracy,close correlation of predicted results to experimental results,and its time spent on prediction was 1/3of that with BP network.GA-BP network was more suitable for performance prediction of a pump working as hydraulic turbine.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《兰州理工大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:甘肃省教委
  • 主办单位:兰州理工大学
  • 主编:李有堂
  • 地址:甘肃省兰州市兰工坪路287号
  • 邮编:730050
  • 邮箱:journal@lut.cn
  • 电话:0931-2756301
  • 国际标准刊号:ISSN:1673-5196
  • 国内统一刊号:ISSN:62-1081/T
  • 邮发代号:54-72
  • 获奖情况:
  • 甘肃高等校优秀学术期刊,全国优秀高校自然科学学报及教育部优秀科技期刊评...,第二届国家期刊奖百种重点期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:6651