位置:成果数据库 > 期刊 > 期刊详情页
基于盲源分离与小波降噪的旋转机械故障分析
  • ISSN号:1003-8728
  • 期刊名称:《机械科学与技术》
  • 时间:0
  • 分类:TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]西北工业大学振动工程研究所,西安710072, [2]中国航空动力机械研究所,株洲412002
  • 相关基金:国家自然科学基金项目(10902084);陕西省自然科学基础研究项目(2011JQ1011);航空科学基金项目(20092108003,20112108001);西北工业大学2010年度“翱翔之星计划”项目资助
中文摘要:

基于小波降噪和盲源分离相结合对机械信号进行分离与故障诊断。首先使用经分析选择的较好小波阈值对非平稳振动信号进行降噪,然后运用盲源分离技术分离出激振信号,结果表明利用小波阀值降噪后进行盲源分离时分离信号与源信号相似系数优于直接盲源分离;将小波降噪和盲源分离相结合应用于某燃气轮机的实测故障信号提取,诊断出转子发生了不平衡及碰摩等故障现象,与实测情况相符,有效说明了该方法在旋转机械故障诊断中的实用性。

英文摘要:

The vibration signals of rotating machinery are separated and diagnosed by combining the wavelet noise reduction and the blind source separation in this paper. Firstly, the combing method uses the better wavelet threshold value de-noising to reduce noise for non-stationary vibration signals, and then separates the useful vibration signals with blind source separation. It shows that the combining method is more effective than the direct blind source separation in signal processing. Applying the combining method to analyze real measured trouble signals of a gas turbine, the fault diagnosis results are found to be in agreement with practice. The result shows that the combing method is efficient in analyzing the fault diagnosis of rotating machinery.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机械科学与技术》
  • 中国科技核心期刊
  • 主管单位:
  • 主办单位:西北工业大学
  • 主编:姜澄宇
  • 地址:陕西西安友谊西路127号
  • 邮编:710072
  • 邮箱:mst@Nwpu.edu.cn
  • 电话:029-88493054 88460226
  • 国际标准刊号:ISSN:1003-8728
  • 国内统一刊号:ISSN:61-1114/TH
  • 邮发代号:52-193
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:21878